Endomorphisms of the Plane Preserving a Pencil of Curves

نویسندگان

  • MARIUS DABIJA
  • MATTIAS JONSSON
چکیده

We classify endomorphisms of the plane that preserve a pencil of curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

Construction of a surface pencil with a common special surface curve

In this study, we introduce a new type of surface curves called $D$-type curve. This curve is defined by the property that the unit Darboux vector $vec{W}_{0} $ of a surface curve $vec{r}(s)$ and unit surface normal $vec{n} $ along the curve $vec{r}(s)$ satisfy the condition $leftlangle vec{n} ,vec{W}_{0} rightrangle =text{constant}$. We point out that a $D$-type curve is a geodesic curve or an...

متن کامل

On the total order of reducibility of a pencil of algebraic plane curves

In this paper, the problem of bounding the number of reducible curves in a pencil of algebraic plane curves is addressed. Unlike most of the previous related works, each reducible curve of the pencil is here counted with its appropriate multiplicity. It is proved that this number of reducible curves, counted with multiplicity, is bounded by d − 1 where d is the degree of the pencil. Then, a sha...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

A New Bound on the Number of Special Fibers in a Pencil of Curves

In paper [9] it was proved that any pencil of plane curves of degree d > 1 with irreducible generic fiber can have at most five completely reducible fibers although no examples with five such fibers were ever found. Recently Janis Stipins has proved in [10] that if a pencil has the base of d points then it cannot have five completely reducible fibers. In this paper we generalize Stipins’ result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008